Create scrape_background.py

merge-requests/34/head
Brian Haley 2019-08-16 18:56:56 -04:00
parent 79428d3e5c
commit 34018405a4
1 changed files with 112 additions and 0 deletions

View File

@ -0,0 +1,112 @@
#!/usr/bin/env python
# coding: utf-8
# # Scrape data from aon2e and generate csvs to import in to sqlite
# In[ ]:
# Dependencies
import pandas as pd
from bs4 import BeautifulSoup as bs, Tag, NavigableString
import os
from splinter import Browser
# Setting up Selenium
chrome_driver = os.path.join('..', 'chromedriver.exe')
executable_path = {'executable_path': chrome_driver}
browser = Browser('chrome', **executable_path, headless=False)
# Pandas config
pd.set_option('display.max_columns', None)
# In[ ]:
def scrape_description(url, id_number):
# Empty lists to store the scraped values
name_list = []
description_list = []
print(f'Beginning Data Retrieval')
print(f'------------------------')
# Loop from 1 to the value in weapon_number
for page in range(1, id_number+1):
browser.visit(url + str(page))
html = browser.html
soup = bs(html, 'html.parser')
# Select only the content section
content = soup.find(id='ctl00_MainContent_DetailedOutput')
try:
# Store the name
name = content.find('h1', class_='title').a.text.strip()
name
except:
name = f'name: {page}'
try:
# Start the loop after the link to the book
start = content.find('a', class_='external-link').next_sibling
description = ''
for e in start.next_siblings:
if isinstance(e, Tag):
if e.name == 'br':
if e.next_sibling.name == 'br':
# If the next 2 elements are br skip this
# loop it will be handled in the elif
continue
elif e.previous_sibling.name == 'br':
# If this element and the previous are br
# and the next is not append /n
description = description + ' /n/n'
else:
# If there is just one br append /n
description = description + ' /n'
else:
# Append the text inside the element
description = description + e.text.strip()
elif isinstance(e, NavigableString):
# Since it is just a text append it
description = description + e
except:
description = f'name: {page}'
print(f'{page} of {id_number} | {name}')
# Append values to our empty lists
name_list.append(name)
description_list.append(description)
print(f'------------------------')
print(f'Data Retrieval Complete')
# Create df with the scraped data
data = {'Name': name_list, 'description': description_list}
# Returns a data frame
return pd.DataFrame(data)
# In[ ]:
# scrape the descriptions
url_background = 'https://2e.aonprd.com/Backgrounds.aspx?ID='
number_background = 50 # number to scrape
description_background = scrape_description(url_background, number_background)
# In[ ]:
description_background.to_csv('background.csv', encoding='UTF-8', index=False)